平成27年度卒業論文

高強度レーザー場における真空複屈折性
検知にむけたγ線偏光波長計の開発

広島大学理学部物理科学研究科
クオーク物理学研究室
B125627 沖中 香里

平成28年2月29日
指導教官 杉立徹 教授
主査 本間 謙輔 助教
副査 檜垣 浩之 准教授
概要

本研究では、真空雫屈折性を探査に用いる\(\gamma\)線偏光波長計の開発を行った。真空雫屈折性は、真空空間に直線偏光した電磁場を加えた場合に生じる性質である。この性質が現れている真空に、直線偏光したブロープ光を入射すると、相対折角により偏光度の変化が起こる。ブロープ光の入射後の偏光度変化をみることで、真空雫屈折性は検知できる。この変化を計測するもので、本研究で開発する偏光波長計である。今回は、高強度レーザー場を用いて真空雫屈折性を発生させ、ブロープ光として1 GeVの直線偏光\(\gamma\)線を用いた手法を前提とした開発を行った。本研究の目的は、\(\gamma\)線偏光波長計の偏光及び運動量再構成の精度を調べること、そして偏光波長計に搭載予定であるピクセルセンサー INTPIX4 の基本性能調査を行うことである。シミュレーションでは、粒子反応シミュレーションである Geant4 を用いて、偏光波長計の偏光及び運動量分解能を調べた。結果、偏光度 1.0 の条件において、センサーの厚み 50\(\mu\)m の時 0.43、センサーの厚み 260\(\mu\)m 時には 0.09 の偏光分解能を得た。また、本研究で開発する偏光波長計は 70MeV 直線偏光\(\gamma\)線を用いたテスト実験を今後行う予定である。このテストに向けた準備として、70MeV のブロープ光に対応させた偏光波長計内でのセンサーの配置を再構成した。その上でセンサー厚み 50\(\mu\)m、偏光度 1.0 の条件のもと偏光分解能を求めたところ、統計的に応じて 0.1～0.15 という値を得た。

ピクセルセンサーの基本性能調査では、搭載予定の INTPIX4 のベデスタルと積分時間の関係をまず調べ、その後荷電粒子が観測可能であることを\(\beta\)線を用いて確認した。ついて、パルスレーザーを用いて外部トリガの動作確認を行い、宇宙線観測を行った。宇宙線観測では MIP の分布を得ることに成功し、そこから ADC チャンネルとエネルギーの対応関係を求めることができた。
目 次

1 序論 7
1.1 真空複屈折性 7
1.2 レーザーを用いた真空複屈折性の検知手法 7
1.3 光子と物質の反応 9
 1.3.1 対生成 ... 9
1.4 荷電粒子と物質の反応 10
 1.4.1 原子との非弾性散乱 10
 1.4.2 原子核との弾性散乱 11
 1.4.3 制動放射 .. 11
1.5 γ線偏光波長計の設計 12
1.6 研究目的 .. 13

2 γ線偏光波長計のシミュレーション 14
2.1 Gent4について .. 14
2.2 運動量再構成手法 .. 14
2.3 偏光再構成手法 .. 16
2.4 偏光分解能計算手法 18
2.5 入射エネルギー70MeV時のセンサー配置 19
2.6 結果 .. 21
 2.6.1 運動量再構成 ... 21
 2.6.2 センサーの厚みごとの偏光分解能 21
 2.6.3 偏光再構成 ... 22
 2.6.4 入射エネルギー70MeV時の偏光再構成 23
2.7 考察 .. 25
 2.7.1 運動量誤差の分布について 25
 2.7.2 運動量分解能のピークのずれについて 26
 2.7.3 偏光分解能とセンサーの厚みの関係 26
 2.7.4 入射エネルギー70MeV時の偏光分解能 26
 2.7.5 電子陽電子のxy分布 27
 2.7.6 不変質量の再構成 28

3 ビクセルセンサーを用いた宇宙線の計測 29
3.1 実験概要 ... 29
3.2 INTPIX4 ... 29
3.3 セットアップ ... 30
3.4 ベデスタル計測 ... 31
3.5 β線計測 ... 33
3.6 トリガーモジュールの確認 35

3
3.7 宇宙線の計測 ... 38
3.8 結果 .. 39
3.9 考察 .. 41
 3.9.1 任意の同一 entry における複数ビクセルの反応について 41
 3.9.2 同一ビクセルの複数回反応について 41
 3.9.3 宇宙線の MIP 42
 3.9.4 負に偏っているσについて 42

4 結論 .. 44
5 今後の展開 ... 45

図 目 次

1 仮想電子対の分極 7
2 1GeV 偏光γ線生成の様子 8
3 偏光γ線偏光度変化 8
4 光子と物質の反応 [7] 9
5 電子と物質の反応による損失エネルギー [7] 10
6 原子のイオン化 ... 10
7 励起状態への変位 .. 10
8 原子核との弾性衝突 11
9 多重散乱の様子 [7] 11
10 制動放射 [9] .. 11
11 偏光波長計概観 .. 12
12 電子対の曲率 .. 15
13 曲率半径を求める 15
14 三角形 AOB .. 16
15 本来の入射点 .. 16
16 本来の入射角 .. 17
17 θ 再構成 ... 17
18 偏光を求める .. 18
19 偏光測定 ... 18
20 センサーの再配置 19
21 テスト実験用偏光波長計概観 20
22 電子の運動量再構成 21
23 陽電子の運動量再構成 21
24 センサー厚み 50um 時と 260um 時の偏光再構成 22
25 センサー厚み 50um 時と 260um 時の偏光分解能 22
26 偏光度 1.0 時と 0.5 時の偏光比較 23
27 偏光度 1.0 時と 0.5 時の偏光分解能比較 23
28 入射エネルギー 70 MeV における 10000 ペア対生成時の偏光
分解能 ... 24
29 入射エネルギー 70 MeV における 50000 ペア対生成時の偏光
分解能 ... 24
30 入射エネルギー 70 MeV における 100000 ペア対生成時の偏
光分解能 ... 24
31 電子の運動量分解能 25
32 陽電子の運動量分解能 25
33 入射エネルギー 70 MeV における 10000 ペア対生成時の偏光
分解能 (bin 数 100) 27
34 センサー厚み 50um での再構成された電子の xy 分布 27
35 センサー厚み 260um での再構成された電子の xy 分布 27
36 対生成直後の電子の xy 分布 28
37 再構成運動量と実際の運動量での不変質量再構成の比較 28
38 鋼におけるミューノンの透過距離当たりの電離損失 29
39 INTPX4 写真 ... 30
40 INPIX4 の図 [8] .. 30
41 実験セットアップ概略図 30
42 実験セットアップ写真 31
43 xilinx ケーブル ... 31
44 INTPX4 から得られるヒストグラムの例 31
45 INTPX4 における 100ns 時のペデスタルの 2 次元ヒストグラム 32
46 INTPX4 における 100ns 時のペデスタルの 1 次元ヒストグラム 32
47 INTPX4 における 1000ns 時のペデスタルの 2 次元ヒストグラム 32
48 INTPX4 における 1000ns 時のペデスタルの 1 次元ヒストグラム 32
49 INTPX4 における 10ms 時のペデスタルの 2 次元ヒストグラム 32
50 INTPX4 における 10ms 時のペデスタルの 1 次元ヒストグラム 32
51 β線源配置 ... 33
52 β線観測時の 1 次元ヒストグラム 33
53 β線観測時の 2 次元ヒストグラム 33
54 β線入射時と未入射時のピクセルにおける 1 次元ヒストグラム
の比較 ... 34
55 β線と思われる信号 34
56 ペデスタルの揺らぎが大きなピクセル 34
57 パルスレーザー照射の様子 35
58 外部トリガーの動作確認 36
59 パルスレーザーとセンサーのタイミングチャート 37
60 外部トリガー導入時の INYPIX4 における 2 次元ヒストグラム 37
61 外部トリガー未導入時の INYPIX4 における 2 次元ヒストグラム 37
62 外部トリガー導入時の INYPIX4 における 1 次元ヒストグラム 37
63 外部トリガー未導入時の INYPIX4 における 2 次元ヒストグラム 37
64 宇宙線トリガー 38
65 宇宙線トリガー上から見た場合 38
66 宇宙線トリガー横から見た場合 38
67 宇宙線トリガー入力セットアップ 39
68 宇宙線観測 1 次元ヒストグラム 39
69 宇宙線観測 2 次元ヒストグラム 39
70 ベデスタルの揺らぎの外に位置する宇宙線の信号 40
71 MIP 分布 41
72 複数回反応ビクセルをカットした MIP 分布 42
73 ベデスタルを差し引いた ADC 値 43
1 序論

1.1 真空複屈折性

複屈折性とは、直交するある方向で屈折率が異なる性質のことを示し、結晶の光学的性質としても知られている。文章が書かれた上にのせると、文字が二重に見える事象が複屈折をもたらす例としてあげられる。真空は一般的に何かない空間と考えられているが、光を入射させることで相互作用が加わった場合仮想電子対が現れる。この変化の間に直接関与した電磁場を加えると、図1のように空気内の仮想電子対が印加された電磁場の偏光方向に依存して、ある一定方向に分極し、複屈折が生じる。このようにして真空に生じる複屈折性を「真空複屈折性」とよぶ。

これまでいくつかの研究グループによって、真空複屈折性の検知が試みられていたが、未だに観測がなされていない。これは、真空複屈折による2方向の屈折率変化が非常に小さいためである。たとえば、先行研究の一つであるPVLAS実験の場合、偏光変化率は$\Delta n = 4 \times 10^{-23}$[2]と微小である。

![図1: 仮想電子対の分極](image)

1.2 レーザーを用いた真空複屈折性の検知手法

真空複屈折性は、強い電磁場を与えた真空空間にブローブ光を入射することで検知することができる。ブローブ光として直線偏光を真空に入射すると、複屈折性による直線偏光の偏光度が変化する。これより入射光のブローブ光の偏光度変化$\Delta\varphi$を計測することで、真空複屈折性を検知できる。

$\Delta\varphi$は式(1)で表される。

$$\Delta\varphi = \frac{2\pi\Delta n d}{\lambda} \quad (1)$$

このときΔnは屈折率変化、d光路長、λはブローブ光の波長を示す。$\Delta\varphi$は真空への入射前後の偏光γ線の偏光度を計測することで間接的に求めることができる[3]。偏光γ線の偏光度は式(2)で表される。このときN_1とN_\perpは、レーザー場の直線偏光方向に対して、それぞれ水平方向、垂直方向である。
直線γ線の数である。

\[P_l = \frac{N_{\parallel} - N_{\perp}}{N_{\parallel} + N_{\perp}} \]

(2)

真空複屈折性探索の先行研究では、これまで可視光領域のプローブ光が用いられてきた。屈折率変化が微小なため、光路長 \(d \) を大きくすることで \(\Delta \phi \) を大きくし、検知を目指していた [1][6]。近年、ELI をはじめとする高強度レーザー場の発展により、より強い電磁場を真空空間に印加し屈折率変化 \(\Delta n \) を大きくすることが可能となった。本研究で前提としている実験では、高強度レーザー場を用いて真空に直線偏光した電磁場を印加することで、真空複屈折性の検知を目指す。真空に強い電磁場を与えるポニプレーザーには、ELI-NP に導入予定の 10PW レーザーを用いる。ELI-NP は 2018 年に完成予定の施設であり、ELI プロジェクトにおけるものである。[5] この場合、10PW という高い強度を持つポニプレーザーを用いることで、先行研究では \(\Delta n = 4 \times 10^{-23} \) であった偏光度変化を \(\Delta n \sim 10^{-10} \) という値にできると考えられている。さらに、光路長 \(d \) を大きくする代わりに 1 GeV という高いエネルギーのプローブ光を組み合わせることで、\(\lambda \) の値を小さくする。これにより、先行研究では偏光度変化 \(\Delta \phi = 5 \times 10^{-11} \) であったものに対して、\(\Delta \phi \sim 1 \) を実現できると考えている。

図 2: 1GeV 偏光γ線生成の様子

プローブ光として用いる 1GeV の直線偏光 γ 線は、図 2 のように直線偏光レーザーとプラズマレーザー加速させた無偏光のエネルギー 5GeV 電子をコンプトン散乱させることで生成する。高強度レーザー場が与えられた真空空間を通過する、直線偏光 γ 線の偏光度変化の様子を図 3 に示す。コンプトン散乱により生成する直線偏光 γ 線の偏光度は \(P_l = 0.97 \) と予測され、レーザー場通過後は \(P_l = 0.53 \) となることが予測されている。[1] 本研究では、この偏光計測に必要な γ 線偏光波長計の開発を行った。

図 3: 偏光 γ 線偏光度変化
1.3 光子と物質の反応

偏光波長計の開発をするにあたり、考慮しなければならない光子と物質の反応として、対生成がある。対生成はコンバータで起こる現象であり、偏光波長計では対生成された電子対を利用してγ線の偏光度、波長を測定する。

1.3.1 対生成

対生成とは、光子が電子と陽電子の対に変換されるものである。光子のエネルギーが電子陽電子の質量 2mₑc² より大きくなると発生する現象であり、主に MeV 以上のスケールにおいて支配的な光子と物質の反応である。エネルギー、運動量の保存則により、基本的には真空中では起こらない反応であるが、光を入射すると相互作用を発生させるとエネルギーにゆらぎが生じ、発生することができる。真空波屈折性は、この現象により生成された電子陽電子の分極により具現する。

図5 は、光子と鉛 (Z=82) の各種反応における反応断面積を光子のエネルギーよとに表した図である。エネルギー 1GeV の γ 線においては、数十 barn の反応断面積をもつ。

図4: 光子と物質の反応 [7]
1.4 荷電粒子と物質の反応

偏光波長計内のピクセルセンサーでは、原子核の非弾性散乱によって通過する粒子のエネルギーを測定している。また、多重散乱は偏光や運動量を再構成する際に必ず考慮しなければならない反応である。これらの荷電粒子と物質の反応について、以下で説明していく。

1.4.1 原子との非弾性散乱

これは、荷電粒子と物質中の原子内の電子が、電磁相互作用により散乱する反応である。この過程では、物質中の電子が荷電粒子よりエネルギーを受け取り、その原子は図7のように勧起状態、または図6イオン化される。

図5: 電子と物質の反応による損失エネルギー [7]

図6: 原子のイオン化

図7: 勧起状態への変位
1.4.2 原子核との弾性散乱

これは、電磁相互作用による物質内の原子核と荷電粒子の弾性散乱反応である。代表的な弾性散乱現象である、ラザフォード散乱の図を、図8に示す。一般的にはクーロン散乱とも呼ばれる。

図8: 原子核との弾性衝突

荷電粒子は、物質内をいくつかの微小角散乱を起こしながら通過するが、この多くがクーロン散乱によるものである。また、この効果を多重散乱とよぶ。微小角散乱の場合は、図9における角θはガウス分布に従う。偏光波長計内では、コンバータとピクセルセンサーにおいて、通過する電子陽電子が多重散乱の影響を受ける。

図9: 多重散乱の様子[7]

1.4.3 制動放射

図10のように、物質中の原子との電磁相互作用により荷電粒子の進行方向が変化すると、電磁波が荷電粒子から放出される。この現象を制動放射とよぶ。

図10: 制動放射[9]

また、制動放射に関連する現象として、電磁シャワーがある。これは制動放射によって放出された高エネルギーの光子が対生成をし、さらに対生成された電子陽電子がそれぞれ再び制動放射によって光子を生成するということが繰り返されることで、電子陽電子と光子がつながり生成されていく現象である。
1.5 γ線偏光波長計の設計

本研究で取り扱うγ線偏光波長計の設計は、図11[1][4]となっている。この偏光波長計は、高強度レーザー場における真空複屈折性探索を目的としたものであり、その用途に特化した設計となっている。大きな特徴としては、真空空間を維持しなければならないこと、1GeVのγ線の計測に対応することがある。

偏光波長計に直線偏光γ線が入射すると、コンパータで対生成が発生する。対生成された電子対は、磁場によりそれぞれ曲げてセンサーへ入射する。このセンサーへのヒット情報から、偏光及びγ線のエネルギーを計測する。

真空複屈折性探索のために用いるため、偏光波長計内は真空空間でなければならぬ。電磁石などの電極の使用は真空の保持を難しくし、熱の発生源となる。このためこの偏光波長計では、磁場の生成には電磁石ではなく作成した永久磁石を用いて、ピクセルセンサーに必要最小限の枚数のコンパクトな作りとなっている。

対生成を生じさせるコンパータには、2um金薄膜をもっている。対生成発生効率を考慮すると、原子番号Zの値が大きな物質が好ましい。また、多重散乱の影響を減らし、一回の入射につき多数の電子対が生成されることを防ぐため、薄膜にすることが可能な金を用いている。ピクセルセンサーとも、多重散乱による影響を減らすため、より厚みの小さなものが好ましい。さらに、ブローブ光である直線偏光γ線のエネルギーが1GeVと非常に高いため磁場による曲率が非常に小さく、高い分解能を持ったピクセルセンサーである必要がある。これらの理由より搭載するピクセルセンサーにはINTPIX4を採用したものを使っている。センサーの配置は、生成された電子対のセンサーへの入射が多くなるよう電子対の入射飛跡を考慮したうえで設定している。

[図11: 偏光波長計概観]
1.6 研究目的

本実験の目的は、真空複屈折探索に必要となる偏光波長計の性能調査である。現段階での設計においてシミュレーションを行い、開発する偏光波長計の偏光及び運動量の再構成精度を調べ、設計に改善の余地がないか考察を行う。また偏光波長計のテスト実験に向けて、入射するプロープ光のエネルギーが70MeV時の偏光波長計内のセンサーの配置を設定し、この設定においてテスト実験が可能であるか検証する。ピクセルセンサー INPIX4 の検証では、センサーの基本性能を調査する。偏光波長計に搭載予定の INTPIX4 だが、このセンサーを元に今後実際に偏光波長計に用いるセンサーを開発していく予定である。本研究ではその第一段階として、ベデスタルにおけるノイズの影響と荷電粒子の観測、外部トリガーの導入実験を行った上で、宇宙線の電離損失を観測し大まかな ADC チャンネルのエネルギー修正を行う。
2 γ線偏光波長計のシミュレーション

現段階での偏光波長計の設計は、12ページの図11で表したようになってい る。まず、センサーでのヒット情報から運動量と偏光度再構成する手法を確立し、この設計での偏光波長計の計測の精度を確認する。本研究では、現段階での設計の偏光波長計において、1GeV直線偏光γ線を入射したとき のセンサーへのヒット情報をシミュレートし、その值から運動量及偏光度を 再構成し、分解能を求める。また、偏光波長計に搭載するピクセルセンサーは、厚み260μmのINTPIX4を前提として考えているが、センサーが厚くなるほど多重散乱の影響から偏光再構成の精度は下がると考えられている。このためセンサーはより薄いもののが好ましい。現在センターとしての機能が確認されているもので、厚み50μmのセンサーが存在する。センサーの厚みを変更することも考慮し、本研究では、センサーの厚みの変化がどのように偏光分解能に影響するか確認する。

また、今後偏光波長計のテスト実験を、エネルギー70MeVの直線偏光γ線を用いて行う予定である。偏光波長計内の静磁場は永久磁石を用いて作るため、磁場はエネルギー1GeVのγ線での実験と同じ値でテスト実験を行うことを前提としている。磁場が一定の場合、入射エネルギーが変わると運動量も変化するため、テスト実験用の検出器の配置を計算し、決定した配置での偏光分解能を検証していく。

2.1 Gent4について

Gent4はCERNによって開発された粒子反応シミュレータプログラムである。これを用いることで、粒子が物質中を通過する際の粒子相互作用過程を正確にシミュレートすることができる。高エネルギー原子核物理だけでなく、医学や宇宙科学分野においても世界的に用いられている。本実験では、設計されたγ線偏光波長計によって計測されるセンサーでのヒット情報を求めるために用いる。

シミュレーションの設定には、12において述べた偏光波長計の設計と実際に実験でもいる検出器INTPIX4(P30参照)の情報を用いる。

2.2 運動量再構成手法

入射されたγ線のエネルギーは、対生成後の電子陽電子の運動量から求めることができる。そのためシミュレーションによって得た情報より対生成された電子陽電子の運動量を再構成する。

図12のように、荷電粒子はx方向の静磁場によって曲率をもってセンサーに入射する。このときの粒子の運動量は \(P(\text{GeV}/c) = 0.3 q B [T] R [m] \) によって表される。Rは曲率半径を示し、qは荷電量、Bは磁場の大きさを示す。荷
電流、磁場は定まっていることから、運動量を求めることには曲率半径を求める必要がある。

図 12: 電子対の曲率

図 12 を yz 平面から見たものが図 13 である。曲率半径 R をもって、電子または陽電子が入射した場合を示しており、点 B は対生成箇所、点 A は 1 層目のセンサーにおける入射点である。α は点 A における半径 R の円の接線の傾きであり、1 層目と 2 層目のセンサーの電子の入射位置から求められる。β は対生成点から A への入射角であり、こちらもセンサーのヒット情報から求められる。

図 13: 曲率半径を求める

赤線は半径 R の接線のため式 (3) が成り立ち

\[\alpha + \beta + \gamma = \frac{\pi}{2} \] (3)

三角形 AOB はの二等辺三角形より

\[\angle OAB = \beta + \gamma \] (4)

\[\angle AOB = \pi - 2(\beta + \gamma) \] (5)

式 (3), (5) より式 6 が成り立つ。

\[\angle AOB = 2\alpha \] (6)
また線分 $AB = r$ おいたとき、図14の三角形 AOB に注目すると $R\sin \alpha = \frac{r}{2}$ が成り立ち、式 (7) が導ける。

![三角形 AOB](image)

図14: 三角形 AOB

$$R = \frac{r}{2\sin \alpha} \quad (7)$$

静磁場 $B = 0.6T$、電荷は1であり、また $r = \frac{d}{\cos \beta}$ より、運動量 P は式 (8) で表われる。

$$P[GeV/c] := 0.3 \times 0.6 \frac{d}{2\cos \beta \sin \alpha} \quad (8)$$

2.3 偏光再構成手法

偏光度測定は、対称平面を用いる。図15をみると、電子は点 A,B に射出しており、センサーのヒット情報には A,B の座標が入っている。しかし、これらは磁場の影響を受けた射出点であり、磁場の影響が無かった場合に得られる本来の射出点は点 A',B' となる。よって、偏光を再構成する際は点 A',B' の座標を用いる。まず、この二点の座標再構成を行う。

![座標系](image)

図15: 本来の射出点

図15の一部を yz 平面から見た図が、図16である。図の縦縦の線は実際の射出経路を示し、赤線は磁場の影響がない場合の射出を表す。B' の再構成を例として考える。図からわかるように、射出点 B' を再構成するには本来
の入射角 θ_B を用いる。B' の z 座標を z_B とすると、B' の y 座標は $y_{B'} = z_B \times \tan \theta_B$ と求めることが出来る。このとき x 方向には磁場の影響はないため、再構成は y 座標のみ行えばよい。

![図16: 本来の入射角](image)

この本来の入射角 θ は α、β を用いて求めるられる。図17より、$\angle COA = \alpha + \beta$ であり、$\angle BOA$ は式 (6) より 2α である。よって式 (9) が成り立つ。先述の通り、α, β ともにセンサーへのヒット情報から求めることができ、θ の値は計算できる。

![図17: 再構成](image)

A' B' の xy 座標が求められたところで、偏光を調べる。偏光は電子陽電子ベクトルの角度から測定することができる。角度の始点及び方向を明らかにするために、任意に定めた xy 平面上のベクトルと電子陽電子ベクトルの内積を用いて偏光を計測する。図18のように、x 軸ベクトルを n、電子陽電子対ベクトルを v と定める。この二つのベクトルの内積により、式 (10)(11) に従い角度 φ を求める。このとき始点が電子から陽電子かによって偏りが生じるため、ランダムに陽電子→電子、電子→陽電子のベクトルを作成する。図のベクトルは陽電子→電子ベクトルを表している。
図 18: 偏光を求める

\[v \cdot n = |v||n| \cos \varphi \]
\[\varphi = \arccos \frac{v \cdot n}{|v||n|} \]
このようなにして求めた角 \(\varphi \) を用いて、偏光を求める。

2.4 偏光分解能計算手法

先述のように偏光再構成を行って角 \(\varphi \) を求め、横軸 \(\varphi \)、縦軸 \(\phi \) をもつ
電子対数とすると、図 19 のようなグラフが得られる。
このグラフの関数式は式 (12) に従う。これより、\(p_0, p_1 \) をフリーパラメータと

図 19: 偏光測定

して式 (13) で fitting を行うと、\(p_1 = \text{Polalization} \times \text{Analizingpower} \) となる。
今回は偏光度 Polallization を設定した上でシミュレーションを行い偏光再構成することで、偏光分解能 AnalizingPower を求める。

\[N = N_{unpol}[1 + \text{Polalization} \times \text{Analizingpower} \times \cos(2\varphi)] \]
\[N = p_0[1 + p_1 \times \cos(2\varphi)] \]
2.5 入射エネルギー 70MeV 時のセンサー配置

入射エネルギー 70MeV の場合、生成される電子対の運動量は減少するため、電場が一定の場合曲率半径が小さくなる。よって 1GeV と同じ設計では電子対がセンサーへ入射できないため、ピクセルセンサーの位置を再設定する。エネルギー保存則、運動量保存則より、エネルギー 70MeV のγ線から対生成された電子対はそれぞれ約 35MeV のエネルギーを持つ。今回は、エネルギー 35MeV を電子対が持っていた場合に、電子対がそれぞれセンサーの中央を通るように配置を計算した。

まず、電場により持つ曲率半径を計算した。運動量再構成時と同様に、$P[\text{GeV}/c] = 0.3qBR$ より、35MeV のエネルギーを持った電子の曲率半径 R は求められる。図20のように対生成箇所から、1層目のセンサーまでは z 軸方向に 12cmあるため、角 θ は式 (14) から求められる。

$$12cm = R \sin \theta \quad (14)$$

この角 θ の値と曲率半径 R が分かれば、35MeV のエネルギーを持つ電子が $z = 12cm, 20cm, 25cm$ において、y 座標がいくつの位置を通るか式 (15),(16)より求められる。このようにして各センサーの最適位置が求められる。

図20: センサーの再配置

$$l_1 = R - R \cos \theta \quad (15)$$

$$l_2 = l_1 + 8cm \times \tan \theta \quad (16)$$

$$l_3 = l_1 + 13cm \times \tan \theta \quad (17)$$

計算の結果、電子対の各入射エネルギーが 35MeV 時の各センサーの最適位置は以下のように求められた。これを元に再構成した偏光波長計が図21と
なる。

\begin{align}
 l_1 &= 41.5 \text{ mm} \\
 l_2 &= 104.0 \text{ mm} \\
 l_3 &= 143.5 \text{ mm}
\end{align}

図 21: テスト実験用偏光波長計概観
2.6 結果

2.6.1 運動量再構成

入射されたγ線の波長は電子対の運動量に依存しているため、波長の再構成精度は、電子陽電子の運動量再構成精度に依存する。シミュレーションによって算出した運動量と再構成された運動量との誤差の関係を、横軸\[dp/p = \]（再構成運動量—シミュレーションが計算した運動量）、縦軸 entry 数とした図 22,23 に示す。この再構成は、センサー厚み 260um、入射する γ 線エネルギー 1 GeV、生成される電子対 10000 ペアの条件でシミュレーションしたものである。

図 22: 電子の運動量再構成

図 23: 陽電子の運動量再構成

2.6.2 センサーの厚みごとの偏光分解能

偏光波長計に搭載予定の INTPIX4 の厚みは 260um であるが、センサーが厚くなるほどセンサー内での多重散乱の影響を電子及び陽電子は大きく受け るためセンサーはできる限り薄いものが好ましい。現在、機能が保障されて いるセンサーの中で 50um という厚みのものが存在している。今後センサー の厚みをより薄いものにする可能性も踏まえて、ピクセルセンサーの厚みが、 260um と 50um の場合での偏光を求めた。
この再構成は、入射エネルギー 1GeV、生成される電子対 10000 ペア、偏光度 1.0 の条件のものである。図 24 において、青線がセンサー厚み 50um 時、赤線がセンサー厚み 260um 時の再構成された偏光となっている。

![Graph 1]

図 24: 偏光再構成

図 24 を式 (13)(P18 参照) で fitting したもののが、図 25 である。

![Graph 2]

図 25: 偏光分解能

図 25 から、偏光分解能はセンサーの厚み 50um 時は 0.43、260um 時は 0.09 と求められた。センサーの厚み 260um 時の偏光分解能では他の偏光度での再構成が難しいため、INTPIX4 をそのまま用いた場合センサーの厚みは 260um であるが、今回はセンサー厚み 50um 時での偏光について考察を進めていく。

2.6.3 偏光再構成

偏光度 1.0、偏光度 0.5 の場合で、再構成された偏光を比較した。再構成グラフを図 26 に示す。青線が偏光度 1.0、赤線が偏光度 0.5 の条件で再構成された偏光であり、横軸 ϕ[rad] 縦軸 entry のグラフとなっている。

この再構成は、センサー厚み 50um、γ 線の入射エネルギー 1GeV、生成される電子対 10000 ペアの条件でのものである。

22
図 26: 偏光再構成

図 26 をそれぞれ式 (13)(P18 参照) でフィッティングしたもののが図 27 である。

図 27: 偏光分解能

このとき, $p_1 = \text{偏光度} \times \text{偏光分解能}$ より, 偏光度 1.0 において偏光分解能が 0.43 に対して, 偏光度 0.5 の場合偏光分解能は 0.35 であった。

2.6.4 入射エネルギー 70MeV 時の偏光再構成

図 21 の検出器の配置でシミュレートした情報を用いて, 入射エネルギーを 70MeV としたときの偏光を再構成した。図 28-30 は, 対生成がコンパータにおいて 1000 ペア, 50000 ペア, 100000 ペア生成された場合に再構成した偏光を 18 ページの式 (13) で fitting したものである。

これより, 対生成 10000 ペアの場合偏光分解能 0.15, 50000 ペアの場合偏光分解能 0.14, 100000 ペアの場合偏光分解能 0.11 となった。
図 28: 10,000 ペア生成時

図 29: 50,000 ペア生成時

図 30: 100,000 ペア生成時
2.7 考察

2.7.1 運動量誤差の分布について

16ページの式 (8) より運動量の誤差 Δp は、一定値である静磁場 B とセンサー間距離 d の誤差を無視すると式 (21) で表される。特に今回は α , β ともに微小であり、$\sin \alpha \sim \alpha , \cos \beta \sim 1$ と近似できるため、式 (22) のように表示することができる。α はセンサー内での多重散乱の影響を受ける。多重散乱によって粒子は、入射角度に対しガウシアンの角度分布をもって物質を通過する。このため、角 α はガウス分布に従い、運動量を再構成した結果の誤差もガウス分布に従う。図 31, 32 より、運動量誤差はガウス分布であり予測と一致した。また、ガウス分布の幅から運動量分解能を求めることができ、7 % の分解能を持つことがわかった。

$$
\Delta p \propto \frac{1}{\Delta \cos \beta \Delta \sin \alpha} \quad (21)
$$

$$
\Delta p \propto \frac{1}{\Delta \alpha} \quad (22)
$$

図 31: 電子の運動量分解能

図 32: 陽電子の運動量分解能
2.7.2 運動量分解能のピークのずれについて

誤差のピークは本来 \(dp/p = 0 \) に立つはずである。しかし、図 31、32 をみると、ともにピークが正によってていることが分かる。これは誤差伝播の過程に原因がある。

先ほど式 (22) で表したように、\(\Delta p = \frac{1}{\Delta x} \) に応じた値をもつ。\(\alpha \) が正の場合、\(\alpha \) が \(\pm \alpha \) の誤差を持ったとしても、\(\frac{1}{\Delta x+\Delta y} \) は正の値に収まる。磁場の影響があるため、多くの場合 \(\alpha \) は正の値をとる。このため、\(\Delta p \) は正の値に偏った分布をもつこととなる。

2.7.3 偏光分解能とセンサーの厚みの関係

結果より、図 25 から分かるようにセンサーの厚みを大きくすると偏光分解能が減少することが分かった。これは、センサー内での多重散乱の影響が大きくなったことによると考えられる。

本研究ではセンサーのヒット情報から偏光を再構成しているが、このヒット情報は多重散乱の影響を含んだものである。多重散乱は、電流で述べたように原子と荷電粒子のクーロン散乱であり、物質の厚みが大きいほど散乱によって受ける影響は大きくなる。そして多重散乱の影響が大きいほど偏光分解能は落ちるため、厚みが大きい 260μm の場合が 50μm の場合と比較して、偏光分解能が減少したと考えられる。

2.7.4 入射エネルギー 70MeV 時の偏光分解能

70MeV 時の場合偏光分解能は、0.1～0.15 であり \(\gamma \) 線の入射エネルギー 1GeV での結果が同じ偏光度 1.0 において偏光分解能 0.43 と比較して減少していることがわかる。この原因の一つは、曲率が大きくなった結果センサーに入射する電子対数が減少したことにある。コンパータにおける対生成数が同じ 10000 ペアの場合でも、1GeV でのシミュレーションにおいては 6000 ペアの電子対が再構成できたのに対して、70MeV 時では再構成できた電子対は 200 ペアに達していない。もう一つ考えられる原因として、入射角度の変化があげられる。\(\gamma \) 線の入射に対してセンサーを垂直に置いている場合、曲率が大きいほど角度の大きな斜め入射となる。斜め入射をするということは、センサー内を通過する距離が大きくなり、より多重散乱の影響を受けたと考えられる。また、今回統計量ごとに偏光分解能を求めた。統計量に応じたおおきな変化はなく、さらに統計が増えたにもかかわらず分解能は減少していた。分解能の値だけあれば、10000 ペア生成時がもっともよい値であるが、図 33 のように 10000 ペアにおいて fitting する際には bin 数によって大きく分解能が変化していた。これより、50000 ペア以上の統計は必要であると推察される。
2.7.5 電子陽電子の xy 分布

センサーの厚みによる偏光の再構成の精度は偏光分解能からだけでなく、磁場がない場合の再構成した電子対の xy 平面上の分布を比較することからも考察できる。図 34, 35 は 16 ページでの図 15 における再構成した電子の座標 A' を全電子分 xy 分布にプロットしたものである。それぞれセンサーの厚み 50um、260um 時のプロットであり、偏光度 0.0, γ 線の入射エネルギー 1GeV という条件での再構成の結果を表している。

3 つ目の図 36 は、対生成直後のコンバータ内での電子の xy 分布である。この分布は再構成を経たものではなく磁場がない場合の本来の xy 分布である。スケールは異なっているがこれから 3 つの図を比較したところ、対生成直後では円状の分布であったものが、再構成されると y 軸方向を長軸にもつ楕円に変形していることが分かる。これは、磁場によって曲げられた電子の入射を補正されていないために生じた変形である。この分布の歪みが偏光分解能に影響しており、厚み 260um のものが 50um 時に比べ変形が強いことからも、センサーの厚みによる偏光分解能の減少が理解できる。

図 34: センサー厚み 50um 時
図 35: センサー厚み 260um 時
2.7.6 不変質量の再構成

電子陽電子の運動量から不変質量を求めた。このとき、センサーから得た情報から再構成した運動量と、シミュレーションが計算した運動量をそれぞれ不変質量を再構成した。図37がこの2つの場合を比較したものである。青線がシミュレーションによって計算した不変質量であり、赤線が再構成した運動量から求めた不変質量である。図より、再構成したものでは大きな不変質量がカットされていることがわかる。これは不変質量が大きい場合、再構成するための電子対がそろわないためである。不変質量が大きいということは、電子陽電子それぞれがもつ運動量の偏りも大きくなる。この偏りの結果片方の運動量が小さい場合、磁場による曲率が大きくなってしまいセンサーに入らない。または、一方の運動量が大きすぎる場合も曲率が小さすぎてセンサーに入ることがない。よって再構成は、センサーに入った電子対からのみ再構成されるため、不変質量が大きなものは含まれない。
3 ピクセルセンサーを用いた宇宙線の計測

3.1 実験概要

偏光波長計に搭載するピクセルセンサーである INTPIX4 の基本性能調査を行った。この INTPIX4 は開発段階にあるピクセルセンサーであるため、まずベデスタルにおけるノイズの影響を調べた。また、偏光波長計内で用いる際に検出できなければならぬ荷電粒子が観測可能であるかを、β 線源を用いて実験で確認した。宇宙線の電離損失は、図 38 に従う。図 38 は、銅における横軸宇宙線の電動量、縦軸損失エネルギーである。本計測で測る宇宙線は、数 GeV のオーダーのため、図 38 での Minimum ionization 最小電離損失の範囲に当たる運動量をもつ。このような運動量範囲をもつ粒子を Minimum Ionization Particle 最小電離損失粒子とよび、通称 MIP と呼ばれる。MIP は厚さ当たりのエネルギー損失が一定のため、最終的に宇宙線の計測を行うことで、INTPIX4 の ADC チャンネルとエネルギーの絶対ゲインの関係を求めめる。偏光波長計に実際に搭載する際は、現在の INTPIX4 をさらに改良したものを搭載予定であり、本研究の結果を今後のピクセルセンサー開発に反映していく。

図 38：銅におけるミューオンの透過距離当たりの電離損失

3.2 INTPIX4

本研究では、KEK が開発したピクセルセンサー INTPIX4 をもちいる。INTPIX4 は KEK が開発した積分放射線センサーをもつ SOI ピクセル検出器である。17μm 角のピクセルを 512 × 832＝425084 持ており、約 40 万画素となっている。本研究で開発する偏光波長計は、入射エネルギー 1GeV という非常に高いエネルギーのγ線に対応する必要がある。よってより高い分解能と低い多重散乱確率をもつピクセルセンサーが必要となる。

INTPIX4 の外径は 10.2mm × 15.4mm。厚さが 260um となっている。
3.3 セットアップ

まず、INTPIX4を用いた計測を行うため、図41のように必要機器のセットアップを行った。

実際のセットアップのセンサー部分の写真が図42である。暗箱内に読み出しボードと共に入っており、実験時にはふたを閉めた状態で計測を行った。

情報は読み出しボードのSEABAS2からPCに送ると、PCから読み出しボードのSEABAS2へFPGAを介して読み出しの指示を出す。このときFPGAとPCを接続するために、図43のxilinxのコードを用いる。また、読み出したデータはLANケーブルを通してPCに入力している。

INTPIX4では各ピクセルに落とされたエネルギーをADCチャンネルの値として得ることができる。図3.3は計測の結果得ることができる1次元、2次元ヒストグラムの例である。1次元ヒストグラムは各ピクセルにおけるADCチャンネル値を足し合わせたものであり、横軸ADCチャンネル、縦軸はそ
のADCチャンネルをもつentryの数である。2次元ヒストグラムは、実際のセンサーの画像であり、横軸832ピクセル×縦軸512ピクセルとなっている。colz表示することで各ピクセルにおけるADCチャンネル値を比較できる。

3.4 ベデスタル計測

センサーを用いて計測を行う際、考慮しなければならないものとして積分時間がある。ピクセルセンサーではまず、設定された時間各ピクセルに落とされるエネルギー量が計測され、そのデータが読み出しボードに渡される。エネルギーが計測される単位時間のことを積分時間と呼ぶ。データの読み出しに毎回時間を必要とするので、この積分時間が長いほど早く統計値を賄うことができる。一方で、積分時間を延ばすとノイズも増え、目的の信号がノイズに埋もれてしまう恐れがある。これを回避するため、信号を入れない状況で積分時間ごとのベデスタルを計測し、積分時間とノイズの関係を調べた。
図45-50は積分時間が100us、1000us(1ms)、10ms時のペダスタルの結果である。積分時間の増加に伴って、ペダスタルの値は異なるチャンネルの反応が大きくなっている。これよりノイズが増加していることがわかった。

図45: 100us時のペダスタル
図46: 100us時のペダスタル
図47: 1000us時のペダスタル
図48: 1000us時のペダスタル
図49: 10ms時のペダスタル
図50: 10ms時のペダスタル

32
3.5 β線計測

γ線の偏光及び波長を計測する際は、荷電粒子である電子対をセンサーで観測する必要がある。実際に、荷電粒子がINTPIX4で観測可能なため、放射線源ストロンチウムを用い、β線の観測をINTPIX4で行った。センサーの積分時間を5msとし、暗箱を使用する実験条件での計測を行った。セットアップは基本的に31ページの図42と同様で、線源を図51のようにセンサーの下に配置することで計測を行った。

図51: β線源配置

積分時間5msの計測を1000entry行い、得られたデータからベデスタルを引いたところ図53の2次元ヒストグラムが得られた。Z軸は各ビクセル各entry時のADC値から、ベデスタルを引いた値を1000entry分各ビクセルにつけたものである。各ビクセル各entryでのADC値-ベデスタル値を全entry×全ビクセル分解フロットしたものが、横軸ADCチャンネル縦軸entry数の図52の1次元ヒストグラムである。この1次元ヒストグラムにおいて、高いADCチャンネルの値であったものは、ベデスタルと比較して高い信号が入っていたことであるがβ線の信号の可能性が高い。

図52: 1次元ヒストグラム
図53: 2次元ヒストグラム

図52において高いADCチャンネルをもっているビクセルに注目し、β線入射時と、未入射時（ベデスタル）のADCチャンネルを比較した。図54において赤線がβ線を入射したときのもの、青線がベデスタルの値である。未入射時のヒストグラムから600〜700ch付近がこのビクセルのベデスタルであると考えられる。一方で、β線が入射したときのもの、10σ以上はなれた位置に信号が1つだけ入っていた。

このADC1100chの信号は、1199entry目での信号であった。図53から
1199entryの情報のみプロットしたものが図 55 左の2次元ヒストグラムであり、このヒストグラムにおいて、ピクセル [665][208] 周辺にズームしたもののが右図である。周囲のピクセルと比較して大きく値が異なっていることが図から分かる。さらにこのピクセルにおいて、ベデスタルと比較し高いADC値をもった信号が1つのみということから、この信号がノイズとは考えづらく、この信号はβ線といえる。

図 55: β線と思われる信号

参考に、ある別のピクセルにおけるβ線入射時と、未入射時のADCチャンネルを比較したものを図 56 に表す。図 52 において高いADCチャンネルをもっていたとしても、このようにベデスタルの揺らぎが大きいピクセルの場合はβ線が入ったとはいえない。

図 56: ベデスタルの揺らぎが大きいピクセル
図54の信号のように、ベデスタルのゆらぎと比較して十分大きな値を持って
いるものをβ線と識別したところ、計測時間に比例して増加するβ線の信
号が確認できた。

3.6 トリガーモジュールの確認

荷電粒子が観測可能なことが確認できたところで、続いて宇宙線の計測を
目指した。宇宙線は平均して1sあたり1cm²に1つ降ってくる。降ってくる
全ての宇宙線を計測できれば、MIP計測に必要な統計量は十分たまるが、実
際には宇宙線通過時にセンサーが聞いていないとは限らない。また、宇宙線が
はいていない場合も含めてデータを取得し続けた場合、データ容量が非常
に膨大になってしまうため解析の効率を考えると現実的でない。これらの問
題を解決するために、宇宙線がセンサーを通過したときのみデータを読み出
す外部トリガーの作成を試みた。

まず、パルスレーザーを用いて外部トリガーの動作確認を行った。このとき
外部トリガーを用いた実験のために、FPGAのソースを変更する必要がある。
今回は、すでに開発されたソースファイルをもらいうけ、そのソースを用い
て実験を行った。

ベデスタル計測時から図57のようにセットアップを変更した。パルスレーザー
をINTPIX4の中心に照射している。また、図58のように、SEBAS2には
パルスレーザーを同期した外部トリガーを入力した。トリガーはパルスジェ
ネレーターを用いて作成した。これにより、レーザーが照射されたときのみ
センサーのデータを取得できるようになった。

図57: パルスレーザー照射の様子
図 58: 外部トリガーの動作確認
レーザーとセンサーの読み出しのタイミングチャートを図 59 に示す。トリガーの信号は 1Hz、パルスレーザーはそのうちの 10ms 照射される。積分時間 5ms と重なった時間入射されたレーザーのエネルギーの値が、ADC チャンネルに変換された上で PC に入力される。

図 59: パルスレーザーとセンサーのタイミングチャート

トリガー入力時、未入力時の 2 次元ヒストグラムを図 60〜図 63 に示す。1 次元ヒストグラムは全てのピクセルの ADC 値を足し合わせた値。一方、2 次元ヒストグラムは各ピクセルの ADC チャンネル値からペダースタールを差し引いたものをピクセルごとにプロットしている。これらの図はレーザー照射時のものであり、外部トリガーが動作していることがこれらのヒストグラムから確認できる。

図 60: トリガー有り
図 61: トリガー無し

図 62: トリガー有り
図 63: トリガー無し
3.7 宇宙線の計測

宇宙線の計測を行うにあたり、まず宇宙線がセンサーを通じたときのみデータの読み出しを行うための外部トリガーを作成した。
図64のようにセンサーの上下に光電子増倍管をつなげたシンチレータを設置した。図65はセンサーを上から見た図である。横から見た図を図66に示す。シンチレータのサイズは6mm × 6mm × 6mm となっており、センサーの中心部の上下を挟むようにシンチレータを配置している。

図64: 宇宙線トリガー

図65: 宇宙線トリガー上から見た場合

図66: 宇宙線トリガー横から見た場合

これにより、上下のシンチレータが共に反応したときはセンサーに宇宙線が通過していると考え、2つの光電子増倍管のcoincidence を外部トリガーとする。トリガー入力までの流れは図67 の通りである。光電子増倍管のアナログ信号を Discriminator を通じて NIM 信号に変換後、coincidence を作成した。その後、GateGenerator を通しパルス幅を1us に広げ、読み出しボードSEABAS2に入力した。このとき GateGenerator を用いたのは、coincidenceからの出力そのままではパルス幅が小さく、トリガーとしてSEABAS2に認識されなかったためである。このようにして宇宙線がセンサーを通じたとき、データの読み出しを行う系が作成できた。

計測は、暗箱を用い部屋を暗室状態にした上で行った。センサーの積分時間は5ms と設定した。毎計測ごとに calibration を100entry 行い、このデータをペデスタルとして扱うこととした。

38
3.8 結果

計測結果、図68のような1次元ヒストグラムが得られた。横軸ADCチャネル値、縦軸が横軸の値をもつentry数であり、ADC値は事前に計測したベデステル値を差し引いたものである。logプロットにしたところ、100ch以下に特徴的な分布があることがわかる。ベデステルを引いて100ch以上のADC値をもつ、ある特定のエントリーのピクセルに注目した2次元ヒストグラム図69を作成した。このとき、赤丸で囲ったピクセルが大きく反応していることがわかる。

図68: 宇宙線観測1次元ヒストグラム

図69: 宇宙線観測2次元ヒストグラム
図68での100ch以降の信号のように、宇宙線の信号であればベデスタルと比較して大きなADCチャンネルをもつ。ただし、ベデスタルの揺らぎが大きな場合、図68でのADC値が大きなものだとしても、宇宙線とはいえない。そこで、各ピクセルのベデスタルの揺らぎに対して、計測したADC値が何σ離れているかを求めることから、宇宙線の信号を探した。

まず、式(23)を用いて各ピクセルにおけるベデスタルのσを求める。Ped_{ave}はベデスタル平均値であり、ベデスタルの総計$\sum_{i=1}^{n} \text{Ped}_i$をベデスタルのentry数で割って求めた。$n$はベデスタルの総entry数であり、本実験では$n=100$となる。式(24)のように、計測したADC値からベデスタル平均値を引いたものを求めたσ_{Ped}で割れば、ADC値のベデスタルに対して何σ離れているかが分かる。

$$\sigma_{\text{Ped}} = \frac{\sum_{i=1}^{n} (\text{Ped}_i - \text{Ped}_{\text{ave}})^2}{n}$$ (23)

$$\text{Sigma} = \frac{\text{Cosmicray} - \text{Ped}_{\text{ave}}}{\sigma_{\text{Ped}}}$$ (24)

このように求めた各ピクセルでの値Sigmaを一次元ヒストグラムにプロットしたものが、図70である。

![HPS1D_sigma](image)

図70: ベデスタルの標準偏差に対して何σ離れたかを示すヒストグラム

宇宙線の信号はベデスタルの揺らぎの範囲より大きな値を持っているはずであり、正でかつ大きなSigmaの値であると考えられる。図70において15σ以上の値を持つ信号のADCチャンネル値を図71に示す。このADC値は各信号のADCチャンネルからベデスタル平均値を引いた値である。
3.9 考察

3.9.1 任意の同一 entry における複数ピクセルの反応について

各 entry での反応をみると、1 つでなく複数のピクセル高い ADC チャンネル值を持っている場合があった。宇宙線の入射レートを考えると、1 つの計測 5ms の間に複数入射があるとは考えづらい。しかしながら、宇宙線つまりミューオンは式 (25) に従って崩壊することがある。また、制動放射による電磁シャワーが起こる可能性もある。

$$\mu \rightarrow e + \bar{\nu}_e + \nu_\mu$$ (25)

よって 1 つの宇宙線により、複数ピクセルが反応することは十分起こりえる。

3.9.2 同一ピクセルの複数回反応について

計測結果の中には、複数の entry において 100ch 以上の ADC 値をとっているピクセルが複数あった。40 万ピクセルある中で、同じピクセルに何度も宇宙線が入射するとは考えにくい。このことから、複数 entry において反応しているピクセルは宇宙線以外のものに対して反応していると考えられる。

また、ある計測途中に部屋の電気をつけた際、スケーラーをみると数分のうちに coincidence が複数入っていた。このときどのピクセルが反応していなかったか調べたところ、何度も反応がみられていたピクセルであった。計測はセンサーを暗室で暗箱にいれているため、光が入射すると考えにくいが、宇宙線レートを考えると、これは宇宙線ではなく電気をつけた際に何らかの反応があったと思われる。しかしトリガーが入っているということは、シンチ
3.9.3 宇宙線の MIP

先述の通り、宇宙線以外の反応と思われるものが混じっていることがわかった。この信号を取り除いた場合の、MIP の 1 次元ヒストグラムを図 72 に示す。ここでは、図 68 で 100ch 以上の ADC 値を持っていたビクセルのうち、100ch 以上の信号が二回以上入ってきたものを除いている。この分布より、宇宙線の MIP に対応する ADC 値は約 300ch に相当することが分かり、INTPIX4 の ADC チャンネルはおよそ 3〜4[eV/ch] であることが分かった。

![図 72: 複数回反応ビクセルをカットした MIP 分布](image)

3.9.4 負に偏っている σ について

本来、全体のうちほとんどの割合を占める宇宙線が入っていないビクセルではベデスタルが観測されるため、Sigma の値は 0 をピークに持つグラフとなる。しかしながら、図 70 をみると、負の方向に大きな値をもっている信号が多くある。これは、ビクセルごとのベデスタルの中心値に対して宇宙線が通過したときの信号の方が、ADC 値が小さいビクセルが多くあることを示している。

この現象は、各 entry で ADC 値からベデスタル平均値を引いた 1 次元ヒストグラム図 73 からもわかる。図をみると、ベデスタルを差し引いた値が負のものが多く、ベデスタル平均値が宇宙線トリガーが入ったときの ADC 平均値より大きなことが分かる。
図 73: ベデスタルを差し引いた ADC 値

考えられる原因としては、calibration 時には点灯している PC 画面が時間の経過により宇宙線のトリガーが入力されたときには切れているため、PC の光の影響分ベデスタル値があがったということがある。

この影響を除く解析手法としては、各ピクセルにおいて宇宙線トリガーがかかった entry をベデスタルとみなして同様の解析を行うということがあげられる。十分な統計量があれば、ベデスタル平均値や σ の値に宇宙線の信号の影響は出ない。さらにこの解析手法であれば、何度も反応していたピクセルの信号を除くことができる。
4 結論

本研究では、シミュレーションを用いて、真空複屈折実験に用いる偏光波長計の偏光及び運動量分解能を求めた。結果、1GeV 直線偏光 γ 線の運動量及び偏光を再構成分されることができ、運動量分解能は 7%、偏光分解能については偏光度 1.0 の条件において、センサーの厚み 50um の時 0.43、センサーの厚み 260um 時には 0.09 の偏光分解能を得た。真空複屈折検査のための計測では、直線偏光 γ 線の偏光度は高強度リーザー場に射前で偏光度 0.97、入射後は偏光度 0.53 になると予測されており、本研究よりセンサーが 50um の厚みであれば偏光度計測が可能であると考えられる。さらに偏光波長計のテスト実験において、入射する γ 線エネルギーが 70MeV の場合の偏光波長計内のセンサー配置を電子対の飛跡を計算の上設定し、その上でセンサー厚み 50um、偏光度 1.0 の条件のもとで偏光分解能を求めた。結果、統計量に応じて 0.1 〜 0.15 という値を得た。70MeV 直線偏光 γ 線でのテスト実験では電子対の曲率が大きくなるために、1GeV の実験の場合と比較して分解能が減少したと考えられる。テスト実験では偏光度 1.0 の場合のみで偏光波長計の動作確認を行うため、センサー厚みが理想的な 50um であれば計測確認に問題はないと思われる。これより、今後 INTPIX4 の開発を進め、厚み 50um のセンサーを実現することで、γ 線偏光波長計のテスト実験及び本実験が可能となることが分かった。

INTPIX4 の基本性能の調査では、積分時間に応じてベデスタルにおけるノイズが増加することを確認し、計測に応じて適切な積分時間を設定できるようになった。ついて、β 線源を用いて INTPIX4 による荷電粒子の観測が可能であることを確認した。パルスレーザーの観測と宇宙線の観測において外部トリガーを導入し、その動作確認を行ったところ、パルスレーザー宇宙線ともに観測に成功した。これより、外部トリガーを用いた計測が可能なことを確認できた。また、本研究の宇宙線計測及び β 線計測の結果から、INTPIX4 の ADC チャンネルの大まかな絶対ゲインが分かった。
5 今後の展開

本研究での偏光再構成より、センサーの厚みが計測の精度に大きく影響しており、今後の課題となることがわかった。これまでに厚み50nmのピクセルセンサーが動作することが確認されている。本研究におけるγ線偏光波長計の計測においても、今後INTPIX4を軸として搭載するピクセルセンサーの開発を進めていく。

また、テスト実験でも同様の課題が生じている。本研究では偏光波長計内の静磁場に永久磁石を用いるため、磁場を変更せずセンサーの配置を変更する手法をとったが、静磁場をエネルギーに比例して設定すれば現在のセンサー配置でも計測は可能である。センサーでなく静磁場を変更すれば電子対の曲率は大きくならず、対生成する電子対のうちセンサーに入射する電子対の割合は大きく増加するため、偏光分解能もより大きな値になると考えられる。検証の必要はあるが、磁場を変更する手法をとれば、厚さ260nmのセンサーでもテスト実験は可能であると思われる。一方で、静磁場を変更するためにはテスト実験用に別途永久磁石を作成するか、電磁石を用いる必要がある。特に電磁石を使用すると、本番の実験では考慮する必要のない電気による熱や、真空空間の保持の問題が生じてしまう。これらの問題点やセンサーの開発を考慮した上で、テスト実験に向けた準備も進める必要がある。

INTPIX4の調査では、外部トリガーが機能することが確認できたが、長時間計測を行うにはFPGAプログラムに問題があることが分かった。また、データの読み出しにおいて、不明瞭な部分がいくつか残っている。これらの問題を今後解決していく必要がある。
参考文献

[9] 永江知史，永村正治共著 “原子核物理学” 范華房

[10] レーザー学会、超高強度レーザーの学術応用調査専門委員会, “高強度レーザーの学術応用調査専門委員会報告”
謝辞

本研究で行いました研究は、主査である本間先生のご指導の上で成り立ちました。指導中に何回も研究を取り組む上での姿勢や考え方などは、今後の研究生活にも生かされるものだと思います。解析におきましてもたくさんの助言をいただき感謝いたします。三好先生には、セミナーの授業において量子物理学を学ばせていただきました。杉立先生、志垣先生には研究室でのミーティングにおいて、助言、ご指摘をいただき、毎回多くの気付きを得ることができました。本研究室のOBでもあり、本研究のテーマであるγ線偏光波長計の設計をされた中宮義英さんには、偏光の再構成において生じた様々な問題を相談させていただきました。松浦さんには、修士論文の執筆で忙しい中、初めて扱うGeant4の導入から応用まで質問に応えていただき感謝しております。同室の信明さん、山川さんには細かな疑問点を逐一質問させていただきました。同期の4年生との議論も、成長につながったと思います。改めて、本研究においてご協力いただきました全ての方に感謝いたします。